Lecture 7: Financial Aspects of Proof of Stake

Tarun Chitra

Gauntlet Networks

July 5, 2022

Outline

Proof of Work and Beyond

Sybil Resistance Mechanisms Beyond PoW

Financial Properties of Proof of Stake

Extra Material

Proof of Work and Beyond

Sybil Resistance Mechanisms

- In pseudonymous environments, the most important safety mechanism is Sybil Resistance (SR)
- SR: user cannot split their resources R, distribute R to multiple identities, and earn more rewards vs. not splitting R
 As a miner, I can't split my mining resources and get more
 - block rewards or transaction fees
- The most popular SR mechanism is Proof of Work

What is Proof of Work?

- Recall: Blockchain = miners competing to add txn blocks
- Why do we need Sybil Resistance?
 - User splits into clones, unfairly increasing prob. of winning
- Proof of Work: Miner submits a block B with a hash(B) matching a pattern (e.g. ends in d zeros) wins that block

How is PoW a Sybil Resistance mechanism?

tl;dr: Hashing superpolynomially difficult to improve via splitting

- ▶ Main Assumption in PoW: Hash function $h: \{0,1\}^* \to \{0,1\}^n$ ensures $\operatorname{Prob}[h(x)$ ends in d zeros] $\approx \frac{1}{2^d}$
- $d \in \mathbf{N}$ is the *difficulty*

- Adjusted as fn. of how fast blocks are produced

- Need Ω(2^{d/2}) parallel hashes (splitting of resources) to have appreciable probability of finding block faster
- Difficulty adjustment: Bitcoin adjusts d based on how much hashpower is present so that 2^{d/2} is economically unfeasible

Proof of Work: Pros and Cons

PoW: most common consensus yet controversial mechanism

Pros

- 1. Makes decentralized network creation easy for new participants (just need electricity)
- 2. Identities of miners never have to be committed to

Cons

- 1. Uses a lot of energy, especially relative to centralized systems (but there's nuance here!)
- 2. Limitations to speed, bandwidth that can be processed by PoW

Can we do better?

Outline

Proof of Work and Beyond

Sybil Resistance Mechanisms Beyond PoW

Financial Properties of Proof of Stake

Extra Material

Sybil Resistance Mechanisms Beyond PoW

Sybil Resistance and Sampling

Probabilistic formulation for PoW:

- ▶ *n* players w/ hash power $h_i(k) \ge 0$ at block height $k \in \mathbf{N}$
- Collision resistant hash function guarantees that player i is chosen for block k with probability

$$p_i(k) pprox rac{h_i(k)}{\sum_{i=1}^n h_i(k)}$$

▶ If *i* splits into i_1 , i_2 $h_{i_1} + h_{i_2} = h_i$, *i*'s probability of winning is the same (*proportional allocation*)

Sybil Resistance and Markov Sampling

This is a Markov process that draws block producer i ~ p(k)
 – Conditional on h_i(k), there's no history dependence

- Suggests replacing hash power sampling with a Markov Chain sampling the same distribution
- Idea: Can we simulate the hash power lottery by replace hash power (= energy) with other resources?
 - e.g. Markov Chain Monte Carlo
 - What if it was a *digital resource* like a token instead of energy or hard disk space?

Simulating Proof of Work

Can we cryptographically sample $\mathbf{p}(k)$ w/o using physical resources?

- Need to know two things:
 - 1. Initial resource distribution: $\pi(0) \in \mathbf{R}^n_+$
 - 2. Rewards distribution: $R : \mathbf{N} \to \mathbf{R}_+$ R(k) = block reward at height k
- How do we sample the kth block producer?
 - Let $F_k^{-1}: [0,1] \to [n]$ be the inverse CDF of $\mathbf{p}(k) = \frac{\pi(k)}{\|\pi(k)\|}$

- Given uniformly random $u_i \in [0, 1]$, choose kth producer i_k as

$$i_k = F_k^{-1}(u_i)$$

Sybil Resistance Mechanisms Beyond PoW

Given $\pi(0)$ and a way to sample *i*, we can simulate PoW:

1: Initialize $\pi(0), R(k) \forall k \in \mathbf{N}, \forall i, \pi_i(0) > 0$ 2: **for** k = 0 to N **do** 3: $\pi(k+1) \leftarrow \pi(k)$ Initial next stake distribution 4: $i_k \sim \frac{\pi(k)}{\|\pi(k)\|_1}$ Sample block producer via inverse CDF 5: $\pi(k+1)_{i_k} \leftarrow \pi(k+1)_{i_k} + R(k)$ Reward winning producer 6: **end for**

Proof of Stake: Simulating PoW (sort of)

- 2011: Proof of Stake first proposed in the BitcoinTalk forums (w/o mechanism for sampling)
- 2015: Use Verifiable Random Functions (VRF) for cryptographic sampling of π
- ▶ VRF allows *n* parties to sample $u_i \sim \text{Unif}([0, 1])$
 - Verifiable, private, non-manipulable
 - e.g. use private key as the seed to a PRNG; generate ZK-like commitment that anyone can verify using my public key
- Stake distribution π is public in the ledger ⇒ we can use u_i and inverse CDF to simulate PoW

Proof of stake instead of proof of work July 11, 2011, 04:12:45 AM Merited by ETFbiccoin (3), Vod (2), webtricks (2), d5000 (1), drays (1)

Sybil Resistance Mechanisms Beyond PoW

What is the stake distribution?

• Take a step back: What is π ?

- Distribution of *coins* in the system
- $-\pi_i$ is the number of coins held by the *i*th address
- Fundamentally different than PoW:
 - PoW samples hash power distribution to generate new coins
 - But coin and hash power (resource) distribution can diverge
 - e.g. Selling coins doesn't impact hash power distribution but changes coin distribution
 - Not true in PoS by construction

Proof of Stake: Pros and Cons

Benefits of a single coin and resource distribution (PoS)

- Lower latency, higher throughput
- Easier to add finality (e.g. Tendermint, HotStuff)
- Negatives that don't apply to PoW
 - Financial properties make PoS less secure
 - Distribution $\mathbf{p}(k)$ must be public and known to all users in PoS

PoS v. PoW

Let's summarize the differences between PoS and PoW

- PoW is partial information (you don't know {h_i} for all players), PoS is full information¹
- PoS relies on Adpativity (e.g. resources need to be live at all times) — [LPR20] show an impossibility theorem for safety, liveness, and adaptivity
- Financials outcomes are different because coin and resource distribution are different

¹Except w/ homomorphic encryption [BEHG20] Sybil Resistance Mechanisms Beyond PoW

Outline

Proof of Work and Beyond

Sybil Resistance Mechanisms Beyond PoW

Financial Properties of Proof of Stake

Extra Material

Financial Properties of Proof of Stake

Notable Financial Differences between PoS and PoW

Three main financial distinctions between PoS and PoW,

- 1. **Concentration of Wealth**: PoS currencies have more extreme wealth concentration than PoW
- 2. **DeFi cannibalizes security**: Yields from protocols built *on* of a PoS chain can cannibalize security from the base protocol
- 3. Derivative assets provide easier access to returns: PoS derivatives, while dangerous, allow for a level playing field (extra material)

How does one compound wealth in PoW?

Compounding of wealth in PoW: Hash power h_i earns $p(h_i)$ coins which buys $H(p(h_i))$ units of hash power

- Risky process: H, p are random variables of market prices
- No Instant Compounding: Only compound by selling coins for hash power (non-zero latency)
- Expected Earnings Distribution: Binom $(T, h_i / \sum_i h_i)$

How does one compound wealth in PoS?

- ► Zero Risk: Coins earned can immediately be used to increase future rewards (e.g. $H \circ p$ is deterministic)
- Instant Compounding: Earned coins can be immediately used to compound wealth
- Expected Earnings Distribution: Beta $(\pi_i, 1 \pi_i)$

Financial Properties of Proof of Stake

Compounding, compared

Can lead to severe wealth inequality:

Financial Properties of Proof of Stake

Reducing Compounding of Wealth

Simple model of [FKO⁺19] assumes

- No addition or removal to stake / hash power distribution
- Single leader per block

Define *equitability*: $E_i(T) = \frac{Var[\pi_i(T)]}{\pi_i(0)(1-\pi_i(0))} = variance at time T / variance at time 0$

Main result: Only sufficiently non-constant, inflationary block rewards can ensure that $E_i(T) \ll E_i(0)$ as $T \to \infty$

Comparison of Equitable, Inequitable Rewards

Fig. 2: Bitcoin block rewards as a function of block height. The area of the shaded region gives the total stake after $T_1 + T_2$ time.

Fig. 3: Geometric block rewards as a function of block height, using Bitcoin-based T_i and R_i values from Figure 2.

S(T,+T) = (50+25)(210,000)

T_ = 2 x 210,000 blocks

Rational Staking Actors

- Most cryptography/DS proofs assume 2 types of agents: honest, Byzantine
- But what about rational agents with complex strategies?
- Suppose there are two coin yields, γ₁(k), γ₂(k) ∈ R₊
 − γ₁(k) is the yield for staking, γ₂(k) is from on-chain lending at block height k ∈ N
- How does a rational agent allocate their coins?

Modeling Rational Stakers

Rational Agent i state at block height k

- Resource Distribution: $\pi_i(k) \in [0, 1]$
- Wealth: $W_i(k) \in \mathbf{R}_+$

Model of [Chi21] assumes each agent is *Markowitz*, *e.g.* updates their allocation by solving the convex program

$$\pi_i(k+1) = \operatorname*{argmin}_{\pi} \pi(k)^T \boldsymbol{\gamma} + \pi(k)^T \boldsymbol{\Sigma} \pi(k)$$

where

•
$$\pi(k) = [\pi(k), 1 - \pi(k)]$$

• $\gamma = [\gamma_1, \gamma_2]$
• $\Sigma \in \mathbf{R}^{2 \times 2}$ is a PSD covariance matrix

Financial Properties of Proof of Stake

Competitive Equilibria Between Staking and Lending

Main Results:

- 1. Unless the inflation is increasing exponentially, $\lim_{k\to\infty} \pi(k) = 0$ a.s.
- 2. Galton-Watson phase transition between $\lim_{k\to\infty} \pi(k) \in \{0,1\}, \ \pi(k) \to c \in (1/4, 3/4)$ as a function of lending demand distribution moments

Simulation of Galton-Watson Phase Transition

- Left: Oscillatory behavior in relative percentage of supply in stake (blue) and lending (orange)
- Right: 0-1 law where everything ends up lent

Financial Properties of Proof of Stake

- Heatmap of Coins Staked Coins Lent (negative = blue/red, positive = yellow)
- Inflation schedule is $R_h \propto e^{\lambda h}$
- ▶ Blue heatmaps have $\lambda < 1$, Yellow heatmap has $\lambda \ge 1$ (phase transition)

Outline

Proof of Work and Beyond

Sybil Resistance Mechanisms Beyond PoW

Financial Properties of Proof of Stake

Extra Material

Staking Derivatives

Proof of Stake can be capital inefficient for stakers

- Network only secure if capital locked for a long time
- Idea (Manian, Aggarwal, et. al): What if we did overcollateralized lending against stake?
 - *e.g.* I lock \$1,000,000 of staked assets, network lets me borrow \$200,000 against it
 - Protocol can execute its own liquidations and manage liquidity in a CFMM
 - Similar to a 'perpetual' mortage-backed security
- Clearly reduces the security of the network but by how much?

Staking Derivatives Today

- Largest staking derivative today is Lido stETH
- Borrowing against *locked* ETH2 stake
 - Will only be unlocked once the ETH2 merge occurs
- Deposit ETH, receive stETH (which you can use in DeFi)
- stETH/ETH tends to stay near 1, although recently had a liquidity crisis!

Main Results

- Lower concentration of wealth in systems with staking derivatives
- Protocol controlled parameters (e.g. margin requirements, liquidation thresholds) can be adjusted dynamically to avoid ruin scenarios
- Qualitatively different phase transition that staking and lending (measure-valued Pólya urn process)

- Expected Gini Coefficient (left) and L^1 to L^2 norm ratio
- Phase transition Gini coefficient goes down (higher equality) when there's enough borrow demand
- Can show formally this is always *less* than the (expected) Gini coefficient for staking and lending

- x-axis is a notion of *curvature* of the CFMM used for liquidations
- More aggressive price impact (*e.g.* log $k \approx 1$) has no defaults — trade-off risk vs. return by tuning the CFMM

References I

- Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco, Single secret leader election, Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, 2020, pp. 12–24.
- Tarun Chitra, Competitive Equilibria Between Staking and On-chain Lending, Cryptoeconomic Systems 0 (2021), no. 1, https://cryptoeconomicsystems.pubpub.org/pub/chitrastaking-lending-equilibria.
- Giulia Fanti, Leonid Kogan, Sewoong Oh, Kathleen Ruan, Pramod Viswanath, and Gerui Wang, *Compounding of wealth in proof-of-stake cryptocurrencies*, International conference on financial cryptography and data security, Springer, 2019, pp. 42–61.

References II

Andrew Lewis-Pye and Tim Roughgarden, *Resource pools and the cap theorem*, arXiv preprint arXiv:2006.10698 (2020).