Lecture 5: Miner Extractable Value (MEV) and Atomicity

Guillermo Angeris Theo Diamandis

June 2022

Outline

Administrative stuff

CFMM review and oracles

MEV

The good (?) stuff

Outline

Administrative stuff

CFMM review and oracles

MEV

The good (?) stuff

Administrative stuff

PSets and notes

- Previous lecture's derivation notes are up!
- Problem sets 2 and 3 are up
- Problem sets 4 and 5 will (hopefully) go out this week/end
- Feel free to ask questions in the Telegram group

Last two lectures

- Lecture on Tuesday will be remote (by Tarun)
- Lecture on (next) Thursday will be given by Theo

Outline

Administrative stuff

CFMM review and oracles

MEV

The good (?) stuff

CFMM review and oracles

Recap: CFMMs

 Most decentralized exchanges (DEXs) are implemented as constant function market makers (CFMMs)

A CFMM accepts a trade (Δ, Λ) if

$$\varphi(R + \gamma \Delta - \Lambda) \ge \varphi(R)$$

where $0 < \gamma \leq 1$ is a *trading fee* and $R \in \mathbf{R}^n_+$ are the *reserves*

- ► Reserves are updated as: $R \leftarrow R + \Delta \Lambda$, if accepted
- φ is concave and nondecreasing

Recap: Product trading function $\varphi(R) = \sqrt{R_1 R_2}$

Recap: arbitrage problem

► The arbitrage problem given an external reference market is convex (≈ easy)

Recap: arbitrage problem

- ► The arbitrage problem given an external reference market is convex (≈ easy)
- Therefore, can expect CFMM prices to track external market prices
- We can use the CFMM as a price oracle

Oracles

Many protocols need a way to query the price of an asset

- Betting markets
- Options protocols
- They query a price oracle to get the market price
- Often, this is a CFMM
- We rely on the fact that if the price is inaccurate, there is an arbitrage opportunity

Oracles

Many protocols need a way to query the price of an asset

- Betting markets
- Options protocols
- They query a price oracle to get the market price
- Often, this is a CFMM
- We rely on the fact that if the price is inaccurate, there is an arbitrage opportunity
- But the blocked nature of transactions will introduce complexity...

Outline

Administrative stuff

CFMM review and oracles

MEV

The good (?) stuff

Block ordering

Recall that transactions are grouped into blocks by miners

Block ordering

Recall that transactions are grouped into blocks by miners

Miners are allowed to reorganize transactions prior to block inclusion (but not after!)

• Reorganization \rightarrow opportunities to extract value (MEV!) MEV

Transactions with CFMMs change the price

Buying ETH with USDC will increase the price of ETH

Miner information

Problem: Miner can see your trade and then put in a trade before/after yours

Miner information

- Problem: Miner can see your trade and then put in a trade before/after yours
- This introduces many types of miner extractable value (MEV)

Frontrunning

Miner can buy ETH right before you also buy

Backrunning

Miner can take the arbitrage opportunity opened by your trade

Sandwiches

Or the miner can do both!

Oracle manipulation

 Consider a betting protocol that uses a CFMM as a price oracle

Oracle manipulation

- Consider a betting protocol that uses a CFMM as a price oracle
- It may be profitable to manipulate the price and change outcome

Oracle manipulation

- Consider a betting protocol that uses a CFMM as a price oracle
- It may be profitable to manipulate the price and change outcome
- ► For example: Alice bets price p ≥ 1000, Bob bets that p < 1000 on Monday 12:00 am</p>
- If p = 1100 on Sunday 11:59pm, Bob is incentivized to manipulate oracle
- If manipulation is cheap enough, then Bob wins (?!)

Oracle manipulation (cont.)

- CFMMs let us reason about the cost of manipulation
- Very transparent (for better or worse)
- But more general 'oracles' may or may not

Oracle manipulation (cont.)

- CFMMs let us reason about the cost of manipulation
- Very transparent (for better or worse)
- But more general 'oracles' may or may not
- A tricky topic...

You don't even need to be a miner

You don't even need to be a miner

- The market has split into searchers and miners
- Searchers pay miners to include transactions in a certain order in the block

You don't even need to be a miner

- The market has split into *searchers* and miners
- Searchers pay miners to include transactions in a certain order in the block
- Anyone(!) can submit this to miners (via a service called Flashbots)
- See:

https://explore.flashbots.net/leaderboard

Outline

Administrative stuff

CFMM review and oracles

MEV

The good (?) stuff

The good (?) stuff

Flashloans

- In traditional lending, must pay lender some interest rate over time
- But what if T = 0?

Flashloans

- In traditional lending, must pay lender some interest rate over time
- But what if T = 0?
- ► Atomicity of blockchains → instantaneous loans
- You can borrow as much as you want for a small fee, as long as you pay it back in the same transaction!

The implementation

Flashloans admit a simple interface

flashloan(amt: uint, f: func, args: vec[any])

The implementation

Flashloans admit a simple interface

flashloan(amt: uint, f: func, args: vec[any])

Example: flashloan(1000, f, ["hi"])

- Transfers 1000 token from lender to sender
- Calls f with arguments ["hi"]
- Checks if sender has balance $\geq 1000 + {\tt fee}$
- If so, gives 1000 + fee token to lender; sender keeps rest

What can you do with these?

- Arbitrage without capital requirements
- Oracle manipulation
- Perform no-capital liquidations in lending (next lecture)
- Many other things, too!

Next lecture

- We will talk about other applications of oracles
- These applications include lending (and stablecoins)
- Will also deal with how stablecoins are generally organized