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Previous lecture

» Discussed decentralized exchanges (DEXs)

» Focused on a particular implementation: constant function
market makers (CFMMs)

» Talked about some basic notions, such as ‘price’ and ‘portfolio
value’
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This lecture

» Recap the previous lecture with concrete examples

» Discuss some equivalences between portfolio value and trading
functions

» Discuss individual-asset payoffs
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Notation recap

» The notation used here is now (somewhat?) standard
» R € R are the reserves

> ¢ : Rl — Ris the trading function

» A € R is the tendered basket

> A € RI is the received basket

» 0 < v <1isthe trading fee

Recap and overview



Interface recap

» In a CFMM, a swap(amountIn, amountOut) accepts if
p(R+vA = N\) > o(R)
where A is amountIn and A is amountQOut

» When this happens, reserves are updated as

R+ R+A—-A
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Arbitrage problem

» Given external market with price ¢ € R], the arbitrage

problem is
- N
maximize c¢' (A—A
| ( ) acwrl o
subject to p(R+~vA —A) > p(R) | - ° cC’““M
AN>0 f

with variables A, A € R”

OPT=2p
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Arbitrage problem (equiv.)
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Arbitrage problem (equiv.)

o

‘ c
» So the final problem is / v
minimize ¢’ R’
subject to  ¢(R") > ¢(R) V[CS
R'>0

with variable R € R"

» Call optimal value V/(c), the ‘portfolio value function’
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No-arbitrage conditions
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Notes

» For the most part in this lecture, we will consider v =1 for
simplicity

» This will simplify a lot of results

» But more general results can be derived

Recap and overview
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Examples

Examples
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Linear trading function
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Linear trading function (reachable set, prices)
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Linear trading function (portfolio value)
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Product trading function
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Product trading function (reachable set, prices)
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Product trading function (output given input)
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Product trading function (portfolio value)
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Portfolio value function

Portfolio value function
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Now the question

» Now, where we were last time

» Given any portfolio value, can we recover a trading function?

Portfolio value function
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Now the question

\
WA T Q
» Not every portfolio value function! S\ ‘t(l‘) > ,{(R)

» By definition must be
— 1-homogeneous

— Nondecreasing

— Concave

Portfolio value function 22



Now the question

» Not every portfolio value function!

» By definition must be
— 1-homogeneous

— Nondecreasing

— Concave

» Call these consistent portfolio value functions

Portfolio value function
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Now the question

» Given any consistent portfolio value function, can we recover
a trading function?

Portfolio value function
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Now the question

» Given any consistent portfolio value function, can we recover
a trading function?

» Yesl!

Portfolio value function
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Inverse mapping
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Inverse mapping (cont.)
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What does this give us?

» We can construct complicated, interesting payoffs
» One example: we can construct fully decentralized options !
» These options do not require counterparties

» Only rely on people arbitraging the protocol

Portfolio value function
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Second view on CFMMs

» We can view CFMMs as fully-decentralized portfolio
management

» Only requires someone being able to arbitrage portfolio
» Risk-return tradeoff is specified by V

» Can construct a ¢ which gives this tradeoff
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Conclusion

Conclusion
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Final points

» Number of other interesting results in CFMMs
» Including ways of constructing very general payoffs

» Could be a special topic...

Conclusion
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Next lecture

» Things that can only be done on the blockchain
» Flashloans, atomic arbitrage, sandwiching...

» And more spicy topics!

Conclusion
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