Problem set 5: Atomicity and MEV

1 MEV in CFMMs

We will examine one of the common MEV techniques that takes advantage of atomicity: sandwiches. This type of MEV transaction is called 'sandwiching' since it proceeds as follows: a user attempts to trade δ of token B for some amount of token A, a 'sandwicher' then adds a trade before, which buys some amount of A (pushing the price of A up), and a trade after the user's, which sells however much of A was received from the first purchase.

We will analyze a sandwich attack against a user attempting to purchase λ units of token A with δ units of token B using a single 2-token CFMM with trading function φ . Recall that a trade of δB for λ of A is valid if

$$\varphi(R_A - \lambda, R_B + \delta) \ge \varphi(R_A, R_B)$$

We will assume trades are reasonable, so this inequality is always saturated. For the rest of this problem, we will consider a Uniswap v2 swap pool, which has trading function $\varphi(R_A, R_B) = \sqrt{R_A R_B}$ (we assume no fees for this problem).

- a) It is often more convenient to work with the forward exchange function $G(\delta)$ which specifies the amount of output token received λ for a fixed value of the input token δ for a swap $A \to B$. Derive an expression for $G(\delta)$ for Uniswap in terms of R_A , R_B , and δ .
- b) Another useful function is the *price impact function* $g(\delta)$, which denotes the new price of A in terms of B, after a trade of δ . Derive the price impact function for this φ .

Hint. Recall that the unscaled prices are given by $\nabla \varphi(R_A, R_B)$. Scaling everything in terms of B then means that the price of A for B is:

$$\frac{\frac{\partial}{\partial R_A}\varphi(R_A, R_B)}{\frac{\partial}{\partial R_B}\varphi(R_A, R_B)}$$

at reserves R_A , R_B .

c) Show that $g(\delta) = 1/G'(\delta)$.

When users submit this trade, they do not know which other transactions will be placed in the next block. The reserves R_A and R_B may change from their observed values at the time of transaction submission, resulting in a different amount of output token received for a given input token amount. As a result, users specify a *slippage tolerance* η such that a trade is only executed if the user receives at least $1 - \eta$ of the quoted amount quantity. For example, if a trade δ' is executed before the user's trade δ , the user will receive $G(\delta + \delta') - G(\delta')$ of token A instead of $G(\delta)$. Thus, the user's trade is only executed if

$$G(\delta + \delta') - G(\delta') \ge (1 - \eta)G(\delta).$$
(1)

A sandwich attack exploits this to extract as much value as possible by making the user receive the worst possible trade.

- d) Calculate the δ' such that (1) is tight. We will denote this δ' as δ^{sand} .
- e) After the user makes their trade of size δ , the sandwicher sells their δ^{sand} of token A back to the CFMM. Compute the profit from this trade, denominated in token B, in terms of δ^{sand} .