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1 Note

We’ll be using the same notation from class: V : Rn
+ → R is the portfolio value function we

wish to replicate.

Consistent portfolio values. A portfolio value function V is consistent if it is concave,
nondecreasing, and 1-homogeneous, i.e., if for any t ≥ 0,

V (tc) = tV (c).

For the note we will assume that the function V is differentiable, though there is a simple
generalization using subgradient calculus. This means that, since V is concave, we have, for
any c, q ∈ Rn

+,
V (q) ≤ ∇V (c)T (q − c) + V (c). (1)

(This is one definition of concavity for differentiable functions, which we will assume here.)

2 Replicating trading function

We want to show that the trading function defined in the following way:

φ̃(R) = inf
c
(cTR− V (c)) (2)

is a trading function that ‘replicates’ V ; i.e., its portfolio value function is equal to V .

Proof strategy. Let Ṽ (c) denote the optimal objective value of the no-arbitrage problem
for this trading function φ̃:

minimize cTR

subject to φ̃(R) ≥ 0,
(3)

with variable R′ ∈ Rn. We need to show that Ṽ = V , which we will do this in two steps.
First, we will show that Ṽ ≥ V (this is the easy part of the proof) and then we will show
that, given any c, there is always a feasible point R for problem (3) with objective value
equal to V (c).
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Upper bound. The fact that Ṽ ≥ V is a single line: let R be feasible for problem (3),
then

cTR− V (c) ≥ φ̃(R) ≥ 0,

so cTR ≥ V (c). The first inequality follows from the definition of φ̃ in (2), while the second
follows from the fact that R is feasible. Since this is true for any feasible R, and the objective
value for this R is cTR, then necessarily Ṽ (c) ≥ V (c).

Lower bound. To construct the lower bound, we will show that, for any choice of c, there
exists a feasible R for problem (3) with objective value equal to V (c), this will imply that
the optimal value of (3), which is no larger than cTR by definition, is therefore no larger
than V (c). For this point, we will choose R = ∇V (c) (which is nonnegative since V is
nondecreasing!) and first show that cTR = V (c).

Using the definition of concavity (1) and our choice of R, we have that, for any q ∈ Rn
+,

V (q) ≤ RT (q − c) + V (c).

Setting q = 0, we find
0 = V (0) ≤ −cTR + V (c),

or, that cTR ≤ V (c), where the first equality follows from the 1-homogeneity of V . On the
other hand, setting q = 2c, we find

2V (c) = V (2c) ≤ cTR + V (c),

which, after some rearrangement, gives V (c) ≤ cTR. Putting these two statements together,
we get V (c) = cTR, so this choice of R, if feasible, has objective value cTR.

Let’s now show the last part: that R is indeed feasible for (3). For any q ∈ Rn
+, we know,

from (1) that
V (q) ≤ RT (q − c) + V (c).

Rearranging slightly, we have

0 = cTR− V (c) ≤ qTR− V (q).

Taking the infimum over q on the right hand side and using the definition of φ̃ in (2), gives
that φ̃(R) ≥ 0 as required, so Ṽ (c) ≤ V (c).

Equality. Putting both statements together gives the final claim that V = Ṽ . To sum-
marize: we were first given some consistent payoff V . Based on this V , we constructed a
trading function φ̃, with some payoff Ṽ . We then showed that this Ṽ was actually equal to
V , which means that the function φ̃ we constructed has the desired payoff we wanted all
along!
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Two-value property. Why do we use zero for the constraint in problem (3)? This is
because φ̃(R) takes on exactly two values, either φ̃(R) = 0 or φ̃(R) = −∞. To see this, note
that c = 0 is always feasible for (2) so φ̃(R) ≤ 0. On the other hand, if for fixed R there
exists some c′ such that c′TR− V (c′) < 0, then

inf
c
(cTR− V (c)) ≤ tc′TR− V (tc′) = t(c′TR− V (c′)) → −∞

as t → ∞. In other words, if R is feasible, then necessarily φ̃(R) = 0.
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